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Many publications were devoted to the problem of finding methods for calculating the distribution 
function of relaxation time spectra H(T) for viscoelastic media. Direct calculations of this function on 
the basis of known relations of the linear theory of viscoelasticity connected with the solution of Fred- 
holm integral equations of the first kind involve serious difficulties. At the same time, numerical ap- 
proaches to determining the function H(T)  based on the use of experimentally determined material 
functions were proposed in a number of recent publications. Since the accuracy of calculating the func- 
tions depends directly on the confidence of determining the primary experimental data that generally 
always contain errors of a statistical nature, a number of authors employ smoothing numerical methods 
of determining the material functions, or ones that fail to react to the appearance of rough errors. These 
methods include methods of regularization and maximum of entropy. However, they have a number of 
serious shortcomings limiting the possibilities of their successful use. 

In the present work, we propose to employ a different numerical method for these purposes, namely, 
the minimax technique. In our opinion, it is more accurate, rapid, and universal. We consider a scheme 
of constructing an algorithm, give examples of solving test problems showing how the algorithm func- 
tions in various extreme hypothetic situations. The results of the numerical calculations of the function 
H(T) for a real object, viz. polybutadiene are based on experiments run in a rotary viscometer Rheotron 
of the firm Brabender. 

KEY WORDS Relaxation times, viscoelastic media, distribution of relaxation times, numerical 
methods, data treatmenf outlying values, polybutadiene. 

INTRODUCTION 

The viscoelastic reaction (behavior) of a system to deformation is a widely known 
experimental fact. From a physical viewpoint, such behavior is generally explained 
either by the existence of an internal structure andor by the heterogeneous structure 
of the material. It features the most diverse systems, namely, polymers (at temper- 
atures above the glass transition), composites based on polymers, hybrid composites, 
fluid systems of the type of highly structurized petroleums, suspensions, etc. 

Unlike Hookian bodies or Newtonian liquids, the problem of describing the prop- 
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erties of such systems within a broad range of variation of the magnitudes and laws 
of deformation, the rates (or frequencies) of deformation, and other parameters gen- 
erally consists in determining the time dependences of the mechanical characteristics, 
i.e. the material functions reflecting the viscoelastic mechanism of the behavior of 
these systems. In terms of moduli and viscosities and within the framework of a 
linear approximation (conditions not depending on the deformation amplitude), these 
characteristics can include the relaxation modulus G(r), where r is the time, or the 
dynamic storage G'(w) and loss C"(w) moduli, where w is the angular frequency of 
deformation. The storage and loss moduli are the real and imaginary components of 
the complex dynamic modulus G* = G' + ic ' .  

The time dependences of G can be obtained quite simply from experiments in- 
volving stress relaxation wherein the dynamics of the change in the modulus is 
studied after the action of deformation is stopped. The values of G'(o) and G"(w) 
are determined for conditions of the periodic action of deformation set by the law y 
= y,,elW', where yo is the deformation amplitude. 

From the standpoints of a model approach, the ability of a viscoelastic body to 
resist a mechanical load and react thereto adequately is determined by a very im- 
portant characteristic of a system, the relaxation time 7i .  As indicated in Reference 
1, the relaxation time is determined by the ratio of the elastic and viscous (dissipa- 
tive) properties of a material and in the simplest case can be introduced as 

where qi are the viscous and G, the elastic components. 
Such a model approach is simplified for real viscoelastic media that generally have 

a rather complicated internal structure. It is quite natural to introduce a distribution 
function of the relaxation time such as the relaxation spectrum H(7).  Experiments 
revealed'.' that for a broad class of materials (e.g. polymer solutions and melts, 
polymer blends, polymer-based composites), the range in the variation of the relax- 
ation times may form many decimal orders of magnitude. The mechanical reaction 
of viscoelastic media to deformation is determined exactly by the features of this 
spectrum. Depending on the parameters of the external action (the laws of defor- 
mation, the rates or frequencies of deformation, temperatures, etc.), these media may 
reveal the properties of fluid, rubbery, leathery, or glassy bodies. 

Establishment of the form of the function H(7)  is an important theoretical and 
practical task. It is used for constructing physically substantiated theories (phenom- 
enological or molecular) of the viscoelastic behavior of such systems, as well as for 
predicting the properties of specific materials. 

By the linear theory of viscoelasticity, the material functions G(r), G'(w), and 
G"(w), and also the relaxation spectrum of the system H(T),  where 7 is the relaxation 
time, are related by the following expressions': 

G(t) = G, + I-: H(7)e-" d In T ,  t E (-03, 03); 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
5
4
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



RELAXATION SPECTRA 237 

G"(w) = G. + [o'~'/(l + 027')]ZY(7) d In 7, o E (-00, 00); (3) 

G"(w) - iG'(o) = o G'(t)e-i"' dt, o E (-w, 00). (4) 

The constant G, added in expressions (1) and (2) considers the contribution of the 
discrete component into the spectrum for viscoelastic solids at 7 + 00. For visco- 
elastic liquids and uncrosslinked polymers above the glass transition temperature 
G, = 0. 

It can be seen from expressions (1)-(4) that from the theoretical viewpoint the 
determination of at least one of the functions G(t), G'(o), G"(o), and H(T) indicated 
above allows one to calculate the others. In practice, however, these calculations 
associated with integration of expressions (1)-(4) involve considerable mathematical 
difficulties, and consequently the obtaining of an exact solution is problematic. 

From an experimental viewpoint, the possibility of determining the functions G(t), 
G'(o), and G"(w) within broad ranges of r or o depends on the features of the 
instruments employed. Quite often we succeed in establishing the form of a material 
function only within relatively narrow ranges of times or frequencies that do not 
overlap mutually. (The restrictions generally concern either relatively high values of 
t (or low ones of o), or relatively low t's (or high o's).) 

Since direct experimental appraisals of the relaxation spectrum H(T) are impossible 
we must rely on calculations based on material functions (see expressions (1)-(4), 
and also References 1-3). 

Since the direct calculation of the function H(T) is associated with the confidence 
of the experimental determination of the relations G(t), G'(o), and G"(o), we shall 
briefly analyze below the possible experimental errors in determining the material 
functions we are interested in. 

EXPERIMENTAL ERRORS AND APPROACHES TO THEIR SIMULATION 

Experimental results always contain errors, chiefly of a statistical nature. They are 
explained by the influence of parameters not controlled during measurements. It is 
exactly the errors of a statistical nature that can tell considerably on the authenticity 
and correctness of interpretation of the results. Statistical errors are usually simulated 
by independent random quantities from the Gaussian distribution: 
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23 8 YU. G.  YANOVSKY AND YU. A. BASISTOV 

where uZ and rn are the dispersion and mean respectively and are considered to be 
known. 

There are several tests for verifying hypotheses for a normal (Gaussian) 
distrib~tion.~-~ One of them is the Kolmogorov-Smirnov test (see, for example, Ref- 
erence 5 ) .  Another one, the W-test, was introduced by Shapiro and WiIk and was 
used in References 4 and 6. In the latter, the W-test was calculated by the expression 

w =  " (6) 

where 11 = l/n Xy=, q(i) is the sample mean, q(1) 5 q(2) I . - I q(n)  is the 
ordered sample, u = (al, . . . , a# = rn'V-'[(m'V-')(V-'rn)]-L'Z is the vector of the 
parameters in (6), T is transposition, rn - (n X I) is the mean vector, and V - 
(n X n) is the correlation matrix of the n-dimensional normal distribution. 

However, when the tests indicated in References 4-6 are employed, we are always 
faced with an a priori indefinability with respect to the dispersion u and mean rn of 
this normal (Gaussian) distribution (see Equation (5)) .  This hinders the formulation 
of a process algorithm and its correct numerical realization. Moreover, the postulate 
of the correctness of the law of Gaussian distribution of errors was also questioned 
in several publications.' 

If we presume that errors of a statistical nature always include freak values, the 
W-test in a number of cases may be unsuitable. Indeed, the appearance of a freak 
value in statistics [-q(i)]y=, mainly determines the result of summation when calcu- 
lating the sample mean 11. Moreover, the idefinability remains with respect to rn and 
V. In this case, to obtain confident results according to experimental data, one must 
employ smoothing or a method that does not react to the appearance of rough errors. 
These methods include either the method of regulari~ation~.~ or the method of the 
maximum of entropy." 

It should be noted that the methods discussed in References 8- 10 can according 
to Hadamard lead to incorrect solutions [?I. The solution x E X with respect to the 
data y E Y is considered by Hadamard [?I to be correct according provided that for 
any y E Y the solution x = f(y) E X exists, is unique and stable, i.e. p,(f, X) + 0 
when py(j j ,  7) -+ 0. Here p,(*) and py(-) are valuations of the X and Y functional 
spaces respectively, while 2, j j ,  and X, J are approximate and unknown accurate val- 
ues, respectively violation of one of the three conditions indicated above makes the 
problem incorrect. 

Without refuting the usefulness of the methods of regularization and maximum of 
entropy employed, in particular, in References 4,6, and 10 to calculate the relaxation 
spectra of selected viscoelastic media, we shall note that they have a number of 
serious shortcomings which can lead to incorrect results. 

As applied to the problems of the present work, we prefer to use a different method 
of solving incorrectly formulated problems, namely, the minimax one." Unlike the 
methods in References 6 and 8-10, the minimax method yields the best (optimal) 
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RELAXATION SPECTRA 239 

solution with the least favorable initial data. In addition, we shall consider the fea- 
tures of employing this method for calculating the function H(7) using the values of 
material functions determined from rheological experiments. 

MINIMAX METHOD. BRIEF DESCRIPTION OF ALGORITHM 

From the standpoints of a numerical approach, the problem consists in calculating a 
function, e.g. H(T),  from experimental data containing outliers (freak values). We 
shall select the set of possible values of the loss modulus as these data. The 
values were obtained in the range of frequencies, mi and contained the outliers 
5(m,), i.e. 

G:' = G ( w i )  + @wi), when i = 1, . . . , N 

When the outliers ( (mi) ,  i = 1, . . . , N, are present, the problem of evaluating H(T) 
is a priori indefinite with respect to the given G r ( m i )  and, consequently, requires 
additional a priori information. The latter can be introduced by the value set 

N 

where { G r r ) E ,  are the unknown exact data, and 6 2 0 is a parameter of the error of 
the data. 

With a view to the restrictions (7), the optimization problem acquires the form: 

N 
WiT 

H'(T) = arg min m-ax(l/N) 2 H(7) d7 
H G' i= I 

The use of (8) with the restrictions (7) guarantees the calculation of the approxi- 
mation ~ ' ( 7 )  converging to the unknown accurate solution H(T) in a root-mean- 
square approach when 6 -+ 0. 

It should be noted that with the corresponding selection of the positive-negative 
Hilbert spaces, this convergence can be guaranteed in a uniform valuation with a 
certain degree of smoothness.11 

The error parameter 6 > 0 in Equations (7), (8), is considered to be known a priori, 
as is in the method of regularization. Nevertheless, as in the methods of regularization 
and maximum entropy:-'o we may also obtain here a quite "poor" solution H'(T) 
if the values of the parameter 6 > 0 are set a priori by perturbations of the initial 
data not corresponding to the real values. This is why the error parameter 6 > 0 
must be appraised by experimental results when employing methods of solving in- 
correctly posed problems. 

For this purpose, let us consider a sequence of random values: 

OiT H'(T) d7, i = 1, . . . , N J -m 1 + ( W d 2  
T i  = G! - (9) 
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240 YU. G.  YANOVSKY AND YU. A. BASISTOV 

where H’(T) is the solution of problem (7). (8) for a value of 6 chosen arbitrarily 
beforehand. We shall adopt the following assumptions relative to the random values 
of ri, i = 1, . . . , N: the values { ri ) are statistically independent and satisfy an E- 
class of distribution functions”: 

+ = (F,(x) = (1 - &)F(x) + &P(x), E E [0, 11). (10) 

where F( . )  is the theoretically set distribution function, and P(.) is an unknown 
distribution function considering the presence of freak values. 

The numerical parameter E E [0, 11 can be interpreted as the probability of ap- 
pearance of freak values in the experimental results. When E = 0, we have the case 
of indefinability with respect to the parameters F(x) or complete a priori definability 
(see, for example, Reference 6). When E = 1, we have the case of nonparameteric a 
priori indefinitability wherein the distribution function P(x)  cannot be determined a 
priori. And, finally, the case 0 c E c 1 takes into account the parametrically-non- 
parametrically a priori indefinitability. 

Let us assume that the &-class of distribution functions (10) has symmetric den- 
sities f , (x)  = f , ( - x )  with the Fisher’s asymptotic integral condition 

We consider the densityf(x) to be normal 

with an a priori unknown mean m and dispersion u2. The latter characterizes the 
parametric indefinitability of the problem and is well consistent with practice. The 
density p(x),  x E (-a, “3) is considered to be symmetric and unknown and takes 
into account the appearance of freak values for both large and small values of X (the 
requirement of symmetry). The latter reflects the nonparametric a priori indefiniteness 
of the problem. The quantity E E [0, 11 in (10) determines the fraction of freak 
values in an infinite volume of data. 

Consequently, it is necessary to appraise the parameters (m, u) of a hypothetic 
normal distribution according to a finite sample of a fixed volume with parametric- 
nonparametric indefinability. 

Let us introduce the minimax variation problem: 
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RELAXATION SPECTRA 241 

for any L E G and F E +. Here G is the set of convex functions L(t), t E (-m, 

0) symmetric relative to the origin of coordinates and with continuous derivatives 
l ( t )  = dL(t)/dt, t E (-a. 03) and such that for any F E 4 the inequalities 

J f2(x) dF < 03, (dds)  Z(x - s )  dF < m 
-OD -m 

are observed for any S E (-Q), 03). 

shall give the final algorithm for appraising the parameters m and u. 
Without reviewing the mathematical details, which treated in Reference 13, we 

where 6 = ri - lir are centered random values. 
The nonlinear without memory transforms q(-) and x(*) minimize Fisher’s as- 

ymptotic information for the distribution function that is the least favorable in the 
sense of (12) and has the following form: 

where ŝ  = med{xi}E, is a sample median, and 6 = med{ Ixi - 4}E, is the absolute 
median deviation. 

Accordingly: 

The parameters K, and KO are consistent with the indefiniteness parameter E with 
the aid of the relevant coupling equations: 

K, 

exp(-x2/2} dr + (2/K,)exp{-K2/2} = 6 / ( 1  - &) 
I - K m  
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Equations (16) have single solutions at [0, w] for any E E [0, 11. It should be 
noted that when K,  + 03 and K, + 03 the algorithm (12)-(16) coincides with the 
well known algorithm of maximum probability. When K,,, + 0 and K, + 0, the 
algorithm (12)-(16) becomes nonparametric, the median remaining as an estimate 
of the mean, and the absolute median deviation as an estimate of the dispersion. 

NUMERICAL REALIZATION OF THE ALGORITHM OF THE MINIMAX 
PROBLEM: SOLUTION OF INTEGRAL EQUATIONS OF THE FIRST KIND 

As noted above, our task consists in obtaining an exact numerical solution of integral 
equations of the first kind [type (1 -4)], or in a more general form: 

u(t)  = K(t, 7)2(7) d7; t E [c, d]; l 
with approximately given initial data: 

Kit, 71, T E [a, b],  t E [c, d], u’(t), t E [c, d ]  

such that 

[ IR(t, T) - R(t, ?)Iz dr d7 5 hZ, In@) - a(r)l’ dr 5 ti2 I 
We shall seek the exact solution of Equation (17) in the form: 

Z ( t )  = (1 - ?)’ + O.S(sin(~rr))~ + cos(6.51rt). t E [-1, 11 (18) 

Analysis of function (1 8) reveals that it contains seven maxima and six minima in 
the region of determination. This allows us to analyze quite reliably each of the 
solutions 
We shall 
Equation 

obtained in a series of consecutive approximations to the exact solution. 
select the following function as the exact description of the 
(17): 

1 
1 + 100(r - 7)’’ 

K(r,  T) = r E [-1, 11, T E [-1. 11. 

nucleus in 

(19) 

Function (19) is characterized by the fact that the matrix (K( t , ,  T , ) } ~ ~  corresponding 
to it has an inverse. but which is poorly stipulated, because A,,/A,, >> 1. Here A- 
and Amin are its maximum and minimum eigenvalues, respectively. 

An exact function of O(t)  (Equation (17)) can be obtained by integrating it in 
view of (18) and (19). To simplify this task, let us assume that h = 0, the parameter 
6 > 0 is unknown, while the approximate data are determined by the relation 
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= W f )  + &f), f E [-1, 13. (20) 

Here ( ( t )  - {&)}El is a random function (an outlier in the experimental results) 
that is simulated by independent random numbers from two normals distributions 
and zero means and unknown dispersions by the relation: 

In expression (21), 5 is a random number equal to 0 or 1, while El(?) and t2(t) 
simulate the random noise and the outliers in the experimental results or due to 
interruptions in the operation of the instruments, respectively. 

Expression (21) is identical to (10) at a certain present value of E E [0, 11. In 
view of (8), the task of optimization for Equation (17) becomes: 

where 6 > 0 is considered to be unknown. 
We shall seek the approximation of 2; to 2 in the valuation of functional space 

w: [-1, 11: 

We shall consider below some specific test examples illustrating the applicability, 
sensitivity, and features of the proposed algorithm. 

NUMERICAL TEST CALCULATIONS 

Test Problem No. 1 

We shall investigate the sensitivity of the solution of (22) to an inaccuracy in setting 
the error parameter 6 > 0. We performed the calculations for various values of 6 and 
u2. Their results are presented in Figures 1-4. In these and subsequent figures, the 
following notation is used 
M, N is the dimension of the matrix { K ( f i ,  T~)} corresponding to nucleus (19) of 

Equation (17); Z(t)  is the exact solution of (18) (it is needed for illustrative com- 
parison with the solution of (22)); o(f) = U(f) + e(?) is the right-hand side of (17) 
perturbed by an outlier and corresponding to the experimental results; c ( f )  is a ran- 
dom function corresponding to (21), and & is an interruption breakdown parameter. 
The random quality in (21) was determined as follows: 
8 is a random quantity from the sensor of random quantities on the segment 

[0, 11 with a uniform distribution; ui and a;, are the dispersions of the random 
processes l l ( t )  and c 2 ( f )  in (21). respectively. 
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7c'm e 
-1  -0-0.09 t o  1 

FIGURE 1 Influence of parameters and on-solution by M = N = 100, 6 = u' = lo+, E = h = 0.0. 
- Z(?), - - - Z"(t),  - . __ . - U(?). 

T i m  e 
- I  -0 0 1 

FIGURE 2 Influence of parameters 6 and cr' on Z' solution by M = N = 100, u' = 6 = lo-', E = h = 
0.0 (see Figure 1 for symbols). 

Figures 1 and 2 give solutions of problem (22) with complete agreement of 6 and 
ui for E = 0 (no interruption in the observations). We can see that when the dispersion 
of the outlier ui is greater at a;, = 0, a smoother solution of (22) is obt8ined. When 
a: = 6 = 

Figures 3 and 4 give numerical experiments for the case when at does not cor- 
respond to the value of the parameter 6 with = 0. It can be seen (see Figure 3) 
that the difference between the parameters 6 and a: tolerated for normal functioning 
of algorithm (22) is about a decimal order of magnitude. If this difference is greater, 
solution (22) is excited by external noise (Figure 4). 

The examples in Figures 1-4 reveal that a priori setting of the parameter 6 > 0 

(Figure 2), all the extremes on Zo(t) are smooth. 
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- 1  1 
T i m  e 

FIGURE 3 Influence of discrepancy of 6 and u* on Z*, 6 = 
1 for symbols). 

uz = lo-', E = h = 0.0 (see Figure 

\ 
I 

-3 -* t 
FIGURE 4 Influence of discrepancy of 6 and IT*. M = N = 100, 6 = lo-'. u2 = lo-'. E = h = 0.0 (see 
Figure 1 for symbols). 

may lead either to excessive smoothing of the solution or to its oscillation. It is 
therefore necessary to use the algorithm with appraisal of the parameter 6 > 0 using 
the same experimental data D(t), t E [-I, 11. 

Test Problem No. 2 

We study the influence of the appraisal of the maximum likelihood d of the parameter 
6 > 0 on the nature of the solution of (22). 

A glance at Figure 5 clearly reveals that when the appraisal of the maximum 
likelihood is introduced, the renewed solution of Z'(t) is appreciably closer to the 
exact solution Z(r) in a uniform valuation than the solution of ZsO(r) from (22). 
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Time 
-1  -0 0 1 

7 i m e  
- 1  -0  0 1 

FIGURE 5 Maximum likelihood method-estimation of 6-parameter M = N = 100, I Y ~  = 0 2  IDI = 
0.0, So = lo-' 6 = 0.4698 E-4 E-h = 0.0. (a) - Z(r), 
z"ct,, --- zyt,. 

zW(r), - . - . - . - . IW); (b) - 

However, in this experiment (as in the preceding one), interruptions in the obser- 
vations are absent. 

According to (9), at a certain given value of So > 0, a random process (mismatch 
signal) is calculated: 

The realization of this process is shown in Figure 6 by the symbol AU,. The figure 
also shows the functions O(r) = O(r) + E(t) and 
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FIGURE 6 Maximum likelihood method-formation of mismath signal 6, = lo-’ (see Figure 5 for 
other parameters). - n(r), ---- Au(r), - - - - u@(r). 

Time 
-1 1 

FIGURE 7 Influence of freak in an experiment M = N = 100. 6 = ut = lo-’, a:, = 
h = 0.0 (see Figure 1 for symbols). 

E = 0.4, 

Test Problem No. 3 

We study how interruptions in the experimental results affect the solution of (22) if 
we know the value of the error parameter 6 > 0 exactly, i.e. 6 = ui (hypothetically, 
this case has a low probability), but there is no information on there being interrup- 
tions in the measurements. In the given case 6 = ui, and the outlier was simulated 
by (21) with various values of the parameter E E [O, 13. We adopted “sparing 
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FIGURE 8 
symbols). 

- 1  -0 - 0 1 5 1  0 1 

0.45 t 

and Figure 1 for 

FIGURE 9 Influence of freak in an experiment E = 0.7 (see Figure 7 for parameters and Figure 1 for 
symbols). 

conditions” of interruption in the experiment producing no avalance loss of stability. 
The random process determining the interruption was simulated from a Gaussian 
distribution with a zero mean and a dispersion close to the level of stability of the 
solution of (22). 

Figures 7-9 show the loss of stability of the solution of (22) because of interrup- 
tions when E varied from 0.4 to 0.8, &-is present number of the outliers in the data, 
a&is dispersion of the outliers. 

The data of Figures 7- 10 allow us to conclude that even if the exact value of the 
error parameter is known a priori, the Occurrence of interruptions in an experiment 
will nevertheless result in oscillation of the solution of (22). But it is impossible to 
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-1.5 -o'8 t 
FIGURE 10 Influence of freak in an experiment E = 0.8 (see Figure 7 for parameters and Figure 1 for 
symbols). 

determine the Occurrence of interruptions in an experiment a priori. This is why 
algorithm (22) must be supplemented with an additional mechanism for automatically 
detecting interruptions in observations and their correction. 

Test Problem No. 4 

We shall further analyze the influence of an interruption on the solution of (22) when 
appraising the error parameter 6 > 0 by the maximum likelihood method. In the 
given example, an outlier is no longer a steady normal random process and therefore 
the appraisal of the maximum likelihood of the parameter 6 no longer corresponds 
to the true unknown value of this parameter. 

The above examples No. 1 and 2 show that an increase in the value of the param- 
eter 6 > 0 in comparison with the true one leads to smoothing out of the solution 
of (22). However, the same perturbations present in the values of the function o(r), 
conversely, result in oscillation of the solution of (22). The question therefore arises 
as to what the solution of (22) will be in the general case, namely, smooth or 
oscillating. 
Our results (Figure l la ,  b) show that oscillation prevails, and the solution of 

Zo(t)-(Figure 1 1b)-becomes oscillating. This does not correspond to the exact 
solution of Z(<t). Consequently, in this case too the algorithm must be supplemented 
with an additional mechanism for automatically detecting interruptions in the data 
and their correction. 

Test Problem No. 5 

Let us now consider the action of the mechanism for automatically seeking and 
eliminating inhomogeneities in the data D(r). The algorithm of operation of this 
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-0 .22  L 

FIGURE 1 1  Influence of freak in an experiment OF maximum likelihood estimation of &parameter M 
= N = 100, 6, = 0.1. ui = lo-’, a’, = 0.1, E = 0.1, 6 = 0.5762 E-02, h = 0.0. (a) - Z(r), ---- Au(r). 
_ _ - -  ii(r), . . . . z%); (b) - z*(r). 

mechanism was described above in expressions (12)-(16). It consists in the auto- 
matic construction of an adaptive nonlinear inertia-free converter that is optimal in 
the sense of (12). It makes the initial unsteady process steady, but never smooths it 
and, consequently, does not result in a loss of the high-frequency components of the 
initial data. 

Figure 12a presents the initial data of the problem &t) in which, apart from the 
additive outlier, a freak value at the instant t - -0.6 can be seen quite clearly. This 
freak value “oscillated” the solution in Example 4. 

In Figure 12b we can clearly see correction of the mismatch signal by the adaptive 
converter. Here AU, is the mismatch signal without correction, AV, is the same after 
correction. We can see that the adaptive converter automatically discovered a freak 
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" 
- 1  -0 0 1 

-0.06 

T i m e  

Time 

- 1  -0 0 1 
T i m e  

FIGURE 12 Correction of data by uninertia nonlinear converter 6, = O.O!, 8 = 0.3286 E-3 (for param- 
eters see Figure 1 1 ) .  (a) ~ z(t), - - - U(t) ,  . . . . . Z%(t); (b) - - - ( t ) ,  - U = LI' + f ( A 0  = 
f(r) (upper line), - AV = f ( S 0  = f(r)  (lower line); (c) - .Z(r) ,  - - - 28(t) ,  . . . . Zc(t). 
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FIGURE 

0 96 

0.75 

0.54 

0.33 

0 1 2  

-0.09 

13 Experimental dependencies of + ( r )  and T(1)  for polybutadiene (PB), M 

4 8 TLrneIs) 
0 15 30 45 

= 8.3 * lo". 

FIGURE 14 Dependencies of y ( r )  and T ( r )  for PB M = 8.3 . lo4 after processing with the algorithm 
(22). 

value at the instant t - -0.6 and reduced this value to one converting the entire 
random process into a steady one. 

The corrected initial data in Figure 12a are represented by the function 6(f). We 
can note the appreciable diminishing of the freak value on f i( t)  in comparison 
with the initial data o(r). 

Figure 12c shows the modified solution of Zo(T) to be much closer to the exact 
solution of Z(t)  in a uniform valuation than the initial solution of z""(r). 

Our numerical experiments suggest the following conclusions: 
1.  The a priori indefinability with respect to the parameters (h, 6) in problem (8) 

and (12) may substantially distort the solution being sought. 
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FIGURE 

13200 r 

8800 . 

O.OOE0 1.50E7 3.00E7 4.50E7 

15 Dependence of stresses (Pa) vs. times (s) for PB, M = 

0.9 

0.75 

0.6 

0.45 

0 3  

0.1 5 

X m e  (s) 
8.3 . lo'. N = M 

T i m 4  ( S )  

1024. 

U.OOEO 1.50E7 3.00E7 4.50E7 

FIGURE 16 Dependence of deformation rate (s-') vs. time (s) for PB, M = 8.3 . 10'. 

2. To improve the confidence of the solution, a statistical appraisal of the param- 
eters (h, 8) according to the real experimental data must be used. 

3. To appraise the parameters (h, a), adaptive inertia-free nonlinear conversions 
must be employed. In the absence of anomalies (interruptions or deviations in the 
real distribution of outliers from the presumed Gaussian one) in the experimental 
results, these conversions automatically degenerate. However, when anomalies ap- 
pear, the conversions automatically go into action and increase their role with a 
growing number of anomalous elements. In the limiting cases when information on 
distribution of outliers is absent, the algorithm becomes a nonparametric one. 
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USE OF THE MINIMAX METHOD IN SOLVING PRACTICAL PROBLEMS 

Let us now consider an example of using the algorithm (22) proposed above for 
calculations of specific material functions of a real viscoelastic medium. It was con- 
venient to choose polybutadiene (PB), a linear flexible-chain polymer as the material 
simulating such a medium. The rheological properties of this polymer were described 
many times in the Literature (see, for example, Reference 2). Moreover, in Reference 
14, the method of regularization was employed to calculate the function H(T) for 
exactly this polymer. 

We shall select the function of the relaxation modulus G(t)  (see Equation 1) as 
the material function being determined, i.e. calculated with the aid of the above 
algorithm. The experimental results obtained in a rotary viscometer “Rheotron” of 
the firm Brabender were the initial ones for the calculations. The experiments were 
run at different gradients of the rates of deformation 4 and the values of the shear 
stress T corresponding to them were determined. 

Hence, the object of the numerical calculations was to calculate the material func- 
tion G(t)  according to the preset function of the gradient of the deformation rate 
y ( t )  and to the function of the shear stress determined experimentally. 

Figure 13 presents the normalized experimental functions +( t )  = y(r)  + t(t) and 
?(t)  = 7 ( t )  + 8(t) ,  where E(t) and [ ( t )  are random processes. The normalization of 
k(t)lmax +(t) and ?(t)/max 7 ( t )  was performed to visualize the outliers in the initial 
data. In the plots in Figure 13, we can see very clearly the anomalous freak values. 

Figure 14 shows the same functions, but after processing with the described al- 
gorithm (22).  Since the function ? ( t )  is set a priori, its mismatch signal was evaluated 
by the direct difference [ ( t )  = ? ( t )  - y ( t )  and was processed by the above algorithm 
for seeking and eliminating anomalous freak values. Moreover, the operation of 
smoothing a random mismatch signal after eliminating the anomalous freak values 
was applied to the functions + ( t )  and ?(t). 

\ 

a TLme ( ‘ 5 )  
, ‘.- ------. 

245.9 
0 8 16 24 

FIGURE 17 Dependence of relaxation modulus (Pa)  vs. time for PB, M = 8.3 . lo‘. 
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4.0 ’ I 

0 40 80 120 

FIGURE 18 Relaxation time distribution spectra for PB, M = 8.3 . lo‘, calculated according to data 
of Figure 17 and Equation (23). 

Figures 15 and 16 present the nonnormalized functions qh(t), ?(t), respectively, 
used to find the function of the relaxation modulus G+(t). 9 = (i, 8) according to 
the above algorithm (Figure 17). 

The function G(t)  determines the initial data for calculating the relaxation spec- 
trum of polybutadines (see Equation 1) with the aid of a linear intergral operator 

The function H(T) is shown in Figure 18. It should be noted that the calculation 
program (Figures 15- 17) employs the rapid Fourier transform and can process arrays 
of a considerable size. The program for calculation of the relaxation spectrum ac- 
cording to the relaxation modulus G(t), modulus of elasticity G’(o) or loss modulus 
G”(o) operates with an unsteady nucleus of the integral equation. This is why the 
algorithms of the rapid Fourier transform cannot be applied here, and the rapidity of 
program operation is based on the algorithm of rapid conversion of the initial matrix- 
nucleus to a tridiagonal form. 

We noted above that G(t), G’(o), and Gff(o) are related by a pair of Fourier 
transforms. This is why applied programs can feed the functions G’(o) and G(o) 
calculated by the functions +( t )  and ? ( r )  into the output files of a computer. 
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